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Shaping of photorefractive two-wave coupling by fast phase modulation
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Using the distinctive features of the photorefractive nonlinearity, we derive a general self-consistent set of
equations to describe two-wave coupling in the presence of fast and arbitrary strong-phase modulation. By
considering a number of important particular cases, we show that phase modulation is a powerful and useful
tool for shaping the characteristics of two-wave coupling such as the value of the energy exchange, the
diffraction efficiency of the recorded grating, and the structure of the grating fringes. Finally, we analyze the
role of the phase modulation in the active stabilization of wave coupling by means of an electronically
introduced phase feedback.

PACS numbegps): 42.40.Pa, 42.65.Hw, 42.65.Sf, 42.70.Nq

I. INTRODUCTION varying grating allows mutual Bragg diffraction of tieand
Sheams. Thereby the amplituacquires a fast component

Photorefractive two-wave coupling is, as is well known, (R) inside the crystal. Because the prod&&* has now a
due to the dynamic processes of recording of a refractivglowly varying part, the fast components of the signal and
index grating and diffraction from this gratindl,2]. The reference beams start also to participate in the grating forma-
buildup of the grating is, in turn, owing to the charge sepa-tion. One can expect that the phase modulation affects in this
ration by light and the linear electrooptic effect. The characway the grating recording so that the grating fringes and the
teristic time of charge separation in continuous wé@8V)  spatio-temporal behavior of the amplitudesS differ con-
experiments ranges usually from10™2 to ~10° s and the Siderably from the conventional ones.
characteristic nonlinear length of phase changing may be less A few additional points related to the effect of phase
than~10"1 cm[1-3]. modulation are worth _noting: _ _ _

The main characteristics of the photorefractive wave cou- 1he phase modulation technique is one of the simplest to

pling such as the value of the energy exchange, the diffradntroduce into the experimental set(#}. The shape and the

tion efficiency of the recorded index grating, and the struc-Sirength of the phase oscillations may be varied over wide

. : - Jimits.
ture of the grating fringes are well understood, at least Wltth'm' . . .
the simplest models for light-induced charge transport. These The efiect Of. fa.‘St mo_du'?‘“"” on 2W-c_oupllng admits a
complete analytic investigation on the basis of the most gen-

characteristics depend essentially on the type of the photor%-r(,:ll properties of the photorefractive nonlinearity.

fractive response, i.e., on the phase shift between the initiat- Phase modulation has an important implication for the

ing _Iight interfere_nc_g_pattern and the correspon(_jing INdex, tive stabilization of two-wave coupling by means of an
grating. The possibilities to affect two-wave coupling exter-gjectronically introduced phase feedback between the input
nally are rather restricted. and the outpuf5]. Experiment and numerical modeling have

In this paper, we focus our attention on the possibility t0shown[5-8§] that a proper feedback leads often to a periodic
shape the photorefractive two-wa{@N)-coupling by means

of fast phase modulation of an inpigigna) light beam. The R(0) = R(0)
essence of the influence may be explained as follows with

the aid of Fig. 1.
The amplitudeS of the modulated beam includes both the %

5(€0) = 8(&) + 8(&)

fast (S) and slow §) components whereas the amplitude of
the reference bearR has initially no fast component. The
light interference patter(characterized by the produstR*)
experiences both fast oscillations and slow changes. Since
the period of the phase modulation is supposed to be much
shorter than the buildup time of the space-charge field, the
fast oscillations of the interference fringes at first do not
affect the grating formation. At the same time, the slowly

5(0) = 5(0) + 5(0) R(&) = R(&) + 5(%)

A

o
o

*Electronic address: ringhofe@physik.uni-osnabrueck.de FIG. 1. Scheme of a photorefractive 2W-coupling experiment.
TElectronic address: sturman@iae.nsk.su The parallel bended lines show the grating fringes.

1063-651X/2000/6()/20299)/$15.00 PRE 61 2029 ©2000 The American Physical Society



2030 RINGHOFER, KAMENOV, STURMAN, AND CHERNYKH PRE 61

state with practically transparefdr totally diffracting index
grating. This exciting property is definitely caused by the
effect of phase modulation of the input signal beam.

Note that the effect of fast phase modulation on photore-
fractive wave mixing was already considered in a number of
paperd9—-14] having in mind possible applications. The au-
thors of Refs[9-11] analyze the effect of fast phase modu-
lation on four-wave mixing within the undepleted pump ap-
proximation. On the basis of this analysis they demonstrated
a photorefractive lock-in detector, a frequency converter, and
a phase sensitive detector. An exact steady-state solution for 0
the simplest four-wave configuration with phase-modulated
input beams was studied in R¢12]. The effect of fast phase
modulation on two-wave coupling was considered earlier in  FIG. 2. Scheme of the Fourier spectrum of the input signal.
Ref.[13] within a particular mathematical model.

The method introduced in our paper is new to the best ofringes are generally tilted and bent and they are changing in
our knowledge; it is essentially more general and simpler irfime. In spite of its simplicity the nonlinear set)—(3) can-
form in comparison with the methods use in R¢f2] and  not generally be solved analytically; it allows a great deal of
[13]. The applications of our method are different from thosenonlinear regimes for the light amplitud&sand S.

[S(0,w)] (arb. units)

1 1

27r7'p 47er

w

considered in Ref§9-11]. Let theR andS beams be incident onto the plage0 as
shown in Fig. 1. Then, we can formulate the boundary con-
Il. GENERAL RELATIONS ditions for Egs.(1)—(3) in the form
A. Equations for two-wave coupling R(0,7)=Rgy; S(0,7)=S,expliep), (4)

Thg initial set of eqqations for t_he photorefractive 2W- \where the phase,=e,(7) is a periodic function with pe-
coupling can be written in the following dimensionless form, iqq 7,<1 and a zero average valug,)=0. This function
see Refs[2] and[8]: describes the fast phase modulation in question. The input

9;R=IES 1) g;nflltudesRo andS; are generally slowly varying functions

Figure 2 shows schematically the Fourier spectrum of the
input signal S(0,w). The peaks placed at approximately
2mrgt, Amrgt, ... are indeed due to the fast phase
modulation in general. They are not much smaller than the
zero peak. The width of the peaks, which is supposed to be
of the order of one, is due to slow changesSgf The output
‘amplitudes are expected to have a similar structure of the
Fourier spectrum.

9;S=iE*R 2
(€% +1)E=e""RS. (3)

Here ¢ and 7 are the dimensionless coordinate and tifRe,
and S are the dimensionless complex amplitudes of the ref
erence and signal beanisee also Fig. Jl E is the dimen-
sionless grating amplituded and 6 are the characteristic
phases, and the asterisk means, as usual, complex conjuga-
tion. It is supposed that9¢<¢,, whereé, is the dimen-
sionless crystal thickness; in experiment oftga-1. The first two equations of the sé&t)—(3) do not contain
Actually, the set(1)—(3) is valid for many particular mi- any time derivatives and are linear R,S. This property
croscopic models of the photorefractive nonlinearity. Theenables us to formulate some fundamental features of the
specification of the introduced dimensionless parameters fatiffraction process.
the simplest models may easily be found using Refs.3]. Let us consider the grating amplituften Egs.(1) and(2)
The importance of the parametefsand ¢ is different. The as a certain single-valued function éfat an arbitrary mo-
phase # characterizes the type of the photorefractive re-mentr. We can claim then that these equations possess the
sponse and ranges from O tar2 For the diffusion charge fundamental solutiorR,,S, meeting the boundary condi-
transport6= = 7/2; in the case of dominating drift in an tions R,(0)=1, §(0)=0. This solution corresponds
external field or of photovoltaic transpattis often near 0 or  physically to a test of the spatial gratifigecorded up to the
7. The case®=0 andf= =+ 7r/2 are often referred to as the momentr) by a single beam of unit amplitude incident in the
cases of the local and nonlocal photorefractive response. R direction, see Fig. @); R,(£) andS, (&) are the transmit-
nonzero value of the phas® means merely that the relax- ted and diffracted parts of this test beam, respectively. We
ation rate of the space-charge field is a complex quantitycan define analogously another independent fundamental so-
often & is near zero. In the general cds¥< /2. lution of the set(1), (2), Rs,Ss, Which meets the boundary
Equationg1) and(2) describe mutual Bragg diffraction of conditionsR¢4(0)=0, Ss(0)=1 and corresponds to a test of
the R and S beams from the grating. The total light intensity the same grating by a single beam of unit amplitude incident
remains obviously constant during propagation; without lossn the S direction, see Fig. ®). Using Egs.(1) and(2), one
of generality we suppose that the dimensionless total intenzan come easily to the important relations
sity |R|?+|S|?2=1. Equation(3) describes evolution of the
grating subject to the interference light pattern. The grating Ss=Rf; Rs=—§F. (5

B. Fundamental solutions
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@ R=R+R
R.(0) =1 — 5:(60) T @)
—~ =] o |
- whereR,S andR,S are the slow and fast components, re-
— spectively, so thatR)=(S)=0. Then we have from Egs.
j \ (1)—(3) for R andS,
— (X
_/ A P —
J;R=IES
_ ()
0 & d:S=IE*R.
®) These equations are not different in structure f_rom E_m)s.
- S.(60) and (2). As follows from Eq.(8), the sumly=|R|?+]|S|?
j / =<1 does not depend on the propagation coordigate
j For the grating amplitude we have after averaging of Eq.
—/ (3)1
—
€%9,+1)E=€(RS* +(RS*)). 9
_ 22 ~_, (€%, +1)E=€"(RS* +(RS")) ©)
S(0) =1 - Rs(éo) The specific features of the case under study come from the
averagg(RS*) on the right-hand side of this equation.
T Our next goal is to expregRS*) by R andS. SinceR,
’ and Sy have no fast components, we get from Egj,
FIG. 3. Geometric schemes for the introduction of the funda- o
mental solutions. R=RyR,+ &SR, (20
They express the symmetry of Eq4) and (2) under inter- S=RyS, +£SSs (1)
change of the beamB and S. The quantity 7=|R4(&)|?
=|S,(&0)|? is nothing else than the diffraction efficiency of R=S,R expli ep)—¢] (12
the grating at the moment
The solution of Eqgs(1) and(2) with boundary conditions S=5,S4 exp(i ¢p)—¢], (13

(4) is expressed by the fundamental solutions as follows:
where s =(expl¢,)) is a complex parameter characterizing
the effect of phase modulation. Obviously, we hawp<1
and the limiting casée|=1 corresponds to the absence of
(6) the fast modulation. Using Eq¢5), (10), and (11), we ex-

S=RS, + Sp€ #rS; . pressSt and R, algebraically byR and S*,

R=RyR, +Soe PR

_ . . S =(RER+e%S")lo " (14)
Equations(6) show explicitly that each of the amplitudes
consists of transmitted and diffracted components. The found
representation allows, as we shall see in the next section, to

fi th i f Eq$l)—(3 the fast ph —5 =
perform the averaging of Eqs1)=(3) over the fast phase .. lo=|Ro|?+|eSy|>=|R|?>+|S|?. Substituting finally

Re=(e*SER—RyS*)l, ! (15)

oscillations.
these expressions into Eq42) and(13), we obtain easily,
IIl. TIME AVERAGING (RS*)=[Sg|?1 5 2(1~|2|))(RER+£SS")
As follows from the structure of Eq3), the response of X (£* SER—RySY). (16)

the grating amplitudeée to the temporal oscillation of the

productRS* with frequencies much higher than(the high-  This is the relation sought for. Fé#|?>=1, which means no

frequency peaks in Fig.)2s strongly suppressed. In other fast modulation, we have from E¢L6) the obvious result,

words, in the leading approximation i the grating ampli- (~R~S*)=O.

tudeE is a slowly varying function ofr despite of possibly By substituting Eq.(16) into Eq. (9), we arrive at the

strong fast oscillations dk andS. Correspondingly, the fun-  following explicit equation forE, completing the set8):

damental solutionsk, s and S, s are also slowly varying

functions of . (€%9,+1)E=€TaRS* — B(S*)*+B*R?],  (17)
To use this fact for the averaging, we present the light

amplitudesk andSin the form where
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a=1+|S|?(1—&]|?)(|eSo|>—|Ro|H)1g 2 (21) and (22), the upper and the lower, lead to the same
(18) physical results. For definiteness sake, we choose from now
B=1S|%(1— |8|2)850Ro|62- on the upper sign in these equations.

The explicit expressions fd? andQ may then be chosen
The parametera and g are fully defined bye and the slow in the form

input_amplitudeSo and Ry. The boundary values cg(g)

1/2
. . — — 1 o R
and R(&¢) are obviously given byS(0)=¢S, and R(0) pP= _( 11— | =°
=R,. B - V217 o+ 4p2) IR
The terms proportional to¥)? and R? make the struc- 1o (23
ture of Eq.(17) essentially different from that of the conven- . _i 14 a Sy
tional equation for the grating amplitudé—3]. We can ex- Q"= V2 o2+ 482 leSo|

pect therefore that 2W-coupling in photorefractive crystals

can be shaped effectively by the fast phase modulation. The boundary values of new variables&t0, u, and vy,
Note that the fast componeniS as well as the total are given by the inverse unitary transformation,

intensities of theR and S beams may be expressed through

R, S using Egs.(12—(15). The diffraction efficiency,s (“0) :< P Q*) EO (24)
=|R4(&o)|?, is expressed bR, S using Eq.(15). Vo -Q PJ/ls
IV. THE UNITARY TRANSFORMATION The relations derived in this section are sufficient to de-

o scribe fully 2W-coupling under fast phase modulation.
Equation(8) for R, S possess a fundamental symmetry
property that can be verified by direct calculation. They are V. STEADY-STATE SOLUTIONS

invariant under the unitary transformatié)S—u,v given In the general case, a frequency siftexists in steady

by state between the interacting waves. This shift is supposed to
R P —Q*\[u be sufficiently sm_aIILQ| =1. The grating fringes are moving
(_ ) :( ) ( ) (19) in steady state with constant velocity.
S* Q P* v* )’ To obtain the stationary solution of Eq20) and(22) for

. . ~u,v* we assume tha®, andR are constant in time whil&,
"g“jfp'?_ fr? co?;]plex pzram?tter?hmetetmgf the i.ond't'onands are proportional to exp(27). Then we see from Egs.
[PI*+]Q|*=1. In other words, after this transformation we (1)~ (50) "(22). and (23) that P,u=const andQ,v*,E

have cexp(—id7). Correspondingly, we havé= —i yuv*/l, and
du=iEv the following ordinary differential equations ferandv*:
(20) lous= yulv|?
dNv=iE*u. oHe=Y
v=IiE*u (25)

Physically, this means that there is a variety of wave pairs of Iov’g =—y*|ul?,

the same total intensity coupled via the same grating.
Equation(17) for the grating amplitude changes its struc-

ture under the unitqry trans_formation. Moreqver, by a proper y=g¥ (26)

choice ofP andQ this equation may be considerably simpli-

fied. This gives us a constructive method for solving the sets a product of two different factors. The positive factpr

here

(8), (17). depends on the input parameWf=|Ro|?>—|Sy|? and|e|?,
After the unitary transformation, the right-hand side of . . .
Eq.(17) contains terms proportional to/* ,u?, andv*?2. By g=VW5+]e[2(1-W)). (27)

imposing the additional condition, , . ) . ,
P g This factor is symmetric under the interchange of the input

Q axa?+4|8]? intensities Ro|? and| So|?. It is obviously an increasing func-

- 25 (21)  tion of |¢|2. Forl|e|?=1 or for Wy=+1 (strongly different
input intensities we haveg=1. Note that we prefer to use

we eliminate simultaneously the term&andv*2 so that the ~ the input parametef/o, which ranges from-1 to 1, instead

equation forE attains the form of the input contrast of the interference pattexhl_,—Woz.
Sometimes, we shall also use the input beam rato
(€9, +1)E=F Ja’+4|B|%euv*. (220 =|Ry|?|Sp|?=(1+Wp)/(1—W,) instead ofW,. This pa-
rameter ranges from zero to infinity.
The closed set of Eq$20) and(22) for u, v, andE is not The complex parametél depends on the frequency de-

different in structure from the conventional one for 2W- tuning ) and the characteristic phasésand é,
coupling. The effect of the fast modulation comes now from
the square root in Eq22) and from the algebraic relations i exp(if)

betweenu,v andR,S. As can be shown, both signs in Eqs. V= 1-iQexpid)’ (28)
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The solution of Egs.(25 with the boundary valuevj Since(|R|?)+(|S|?)=1, the above intensities may be fully

=v*(0), ug=u(0) has the form characterized by a single combination(iR|?) and{|S|?). It
is useful to choose for this combination the beam ratio
lo v2y! =(|R[?)/{|S|?). From Eqgs.(30), (31), and(32) one can ob-
u=u 29 tain,
% JuolP+ vol2exp2y '€ 29

| yl2y' L:M, (33)
0 lo 1+a_tanh(y'¢)

[Vol >+ [uo|* exp( — 27" &)

* %
V¥ =vg

wherer ,=|Ry|?%/|Sy|? is again the input beam ratio and the
where, y' =Ry. As follows from Eq.(29) [or from Eq. real parameters. , such thata <a, andl|a.|<1, are

(19)], |ul?+]|v[?=[ug|*+]|vo|*=1. given by
For the amplitude®, S* we have after some calculations )
with the use of Eqs(19), (23), and(24): ro—1+2|e|
T ro— D2t argel?
_ ¥E| (Wot|el2=Wolel) ¢ (Fo= 1)+ 4role
R=R,| cos > + sin > (34)
g _ r0_1_2r0|8|2
Wo ~ 2y T oDt argel
x| cost{y' &)+ Esinh(y’f)
The spatial dependence ofis defined only by the real
(30)
_ yE) 1 yé part of the characteristic exponespt Therefore, the energy
St=¢*S; cos)’(f) - —sin){7” exchange remains unidirectional irrespectively of the value
9 of the parametefe|?, characterizing the phase modulation.
— Y2y The sign ofy’, as seen from Eqg26) and (27), does not

X depend ore. If y'>0, energy is transferred to tiebeam.
In the absence of the fast modulatiofe|f=1) Eq. (33
gives the exponential spatial amplificatiorsryexp(2y’ &)
of conventional for 2W-coupling. In the case of equal input

intensities, Wy=0 (ro=1), we have a.==*1, vy’

Wo |
coshiy' &)+ Esmh( Y'é)

At ¢=1 the obtained relations simplify to the conventional
ones for 2W-coupling1-3]. At e =0, which means no slow

input component Qf th& beam, we hav&= 0,_R= RO, and  _ le| W', so that Eq(33) is reduced ta =exp(e[¥'&y).
E=0. This result is expected because the _Ilght mtgrference The effect of phase modulation on the total intensities
pattern has here only a fast component. It is not difficult to<|R|2> and (|S|?) is reduced to weakening of the energy

make sure also thdR|2+[S[?= 1. _transfer. Depending on the purpose of experiment, this effect

Using Egs.(15) and(30), we can calculate now tge dif- may be regarded as positive or negative. Below we analyze
fraction efficiency of the recorded grating=|Rs(&o)|*, the dependence(|¢|?, v’ &.To) in more detail.

5 ) _ ) Let us consider the spatial amplification of a weak ingut
e le[“(1—Wp) |sinh(y&,/2)| (31) beam ¢,<1) in a sufficiently thick (2’ £,>1) nonlinear
g g coshiy’ &) + Wy sinh(y' &) medium. In this case, we have from E§33) and (34):
At £=1 this transforms again into the known result of Ref. r(éo) || exp(2y" &) +1
. _ h _ = y (35)

[15]; ate=0 we have, as expecteg=0. Mo r2e|2(1—|e|2)exp(2y’ &) + 1

The averaged output intensities|R(&)|?) and
(|S(£0)|?), related to the quickly oscillating components of where the dependence ¢f on ||? andr is negligible, see

the beams, are expressed by Eqg. (27). The main effect of the phase modulation comes
from the denominator of Eq35) and becomes important for
(IR(&0)1?) =|Sol?n(1—|?) rale|?(1—|e|?)=exp(—2y'&). In the vicinity of the points
(32 |e|>=0 and 1 one can expect peculiarities of the spatial am-
([S(¢0)[*) =1%ol 21— m)(1-1e[?). plification.

Figure 4 shows the dependenciy)/ro plotted on the
The relations(30)—(32) include a great deal of informa- basis of Eq(33) for a small input beam ratio, and several
tion about the effect of fast phase modulation on the characepresentative values ¢|2. The smallers|?, the lower is
teristics of 2W-coupling. In the following two sections, we the corresponding curve. For a moderate crystal thickness,
apply these general relations to the most important particulay’ é,<5, decrease dfe|? from 1 to =0.5 does not produce

cases. any sharp decrease of For y’' £,=8 the output beam ratio
r(&,) becomes, however, highly sensitive to a decrease of
V]. CHARACTERISTICS OF THE ENERGY EXCHANGE |&|2 in the vicinity of unity. In other words, even a very weak

phase modulation can strongly suppress the energy transfer.
The simplest results take place for the total time-averageds seen from Fig. 4, for’ £,=6 the dependencg|¢|?) is
intensities, (|R|?)=|R|2+(|R|?) and (|S|?)=|S]?+(|S|?).  also very sharp in the vicinity of zero. To make the energy
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FIG. 4. Dependence of the ratidr, on the crystal thicknes,
for the input beam ratic =0.02. The curves 1, 2, 3, 4, and 5
correspond tde|?=1, 0.99, 0.1, 0.5, and 0.05, respectively.

transfer very week, we have to adjlist? to zero with a very
high accuracy. The smaller the input ratio, the larger the
critical crystal thickness and the higher is the saturated value
of r(&g)/ro.

Figure 5 shows the dependenc ) for y' ;=6 and
several values dfs|2. For|e|?=1 this dependence is indeed
strictly linear. Introduction of the phase modulation changes o2
the structure of the curves. Fge|?<1 the functionr(r) T
has a clear maximum. The position of this maximum shifts F|G. 6. The energy exchange between the slow intensity com-

. . 2 . . —
gradually to zero with decreasinfz|® and its value is ponents fory’=0. The solid and dashed lines correspondR{

strongly decreasing. _ and |S|?, respectively. In the cas@) |¢|2=0.25, r,=0.5 and in
In such a way, the phase modulation allows to shape conpe casgb) le[2=0.1, ro=1.

siderably the characteristics of the spatial amplification. A
sufficiently thick crystal acts indeed as a strongly nonlinear o 12 2
filter for amplifying signals. A= 4[Ro| | (1—[e[*)
The energy exchange between the slow intensity compo- (ro—1)%+4rg|e|? '
nents|R|? and |S|?, which can be separated frofR|? and -
|S|2 by temporal filtering, is possible even fof =0 when  Since A>0, the intensitiegR|?, |S|? oscillate with " &,
the total intensitieg|R|?) and(|S|?) remain constant. This petween the input values anBR(0)|2—A, [S(0)|2+A, re-
case, relevant to dominating photovoltaic or drift Chargespectively see Fig. 6. In average, the vaIue|§¢§0)|2 is
transport in ferroelectric$2,3], deserves a more detailed = o — 12
consideration. less thar{R(0)|* whereag S(&,)|? is larger thanS(0)|*.

By settingy’ =0 in Eq.(30) one can represent the spatial __The spanA may approachor be equal to|R(0)|* or

|RI%, |57

37

dependences dR(&o)|? and|S(&o)|? in the form |S(0)|?, which means a strong energy exchange. The equal-
ity A=|R(0)|?=|R,|? takes place for|e|?<1/2, ry=1
IR(&)|2=|R(0)|2— A sir?(y"&/2) —2|e|?<1, see Fig. 6). The case\ =|Sy|?=||?|Sy|? cor-
(36)  responds to,=1, |&|?<1; here|S(0)|2<|S|?=|Rg|?, see
[S(£0)|*=[S(0)[*+A sir?("&0/2), Fig. 6(b).
In the general case, when bogh andy” are nonzero, the
whereR(0)=R,, S(0)=¢S,, and energy exchange betwe#R|? and|S|? becomes more com-

plicated. The spatial oscillations are superimposed here on
the unidirectional energy transfer.

1200
VIl. FULLY DIFFRACTIVE AND TRANSPARENT

800 GRATINGS

|RI*/ISI?

The diffraction efficiency of the recorded grating, is
= 400 also an important characteristic of 2W-coupling. Below we
4 show thatz can be made equal to 1 or 0 with the use of the
phase modulation technique for a sufficiently large crystal
0 0.01 0.02 0.03 ; )
ro = |Rol2/1S02 thlckne_ssgo. In other words, the grating can be made fully
diffractive or fully transparent.

FIG. 5. The output beam ratio versusr, for y'&=6; the To prove that it is possible to reach the ultimate value
curves 1, 2, 3, and 4 are plotted fpr|2=1, 0.95, 0.9, and 0.6, =1, we use in Eq.(31) the identity |sinh(yé&y2)|?
respectively. =[cosh@/'&)—cos('&)]/2. The presence of two variable
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parameters|s|? and (), in the expressions foy [see Egs. 1 for #==/2. Physically, this means that the total intensity
(27) and (28)] allows to considery’ &, and y"&, as two  of the weakest beam has to be increasing owing to 2W-
independent variables to maximizg One can check di- coupling(the same holds true fa#= — 7/2). This property

rectly thatnp=1 for is clearly seen from Eq(39) becausef, becomes an odd
function of Wy, (or logygrg) for 6= m/2. As seen from Fig. 7,

Y'éo=j the actual values dft decrease with increasing sirand the

(38 curves that give)(log,oro) for different values o€, tend to

¥ &=L, lose the intersection point. F@= = /2 the branches with

j#1 come into the scene only for rather thick crystdls,
where j is an odd number(positive or negative and L =>6m7=10.
=In[(g—Wo)/(9+Wp)]. Using Eq.(26), these conditions can  Now we turn to the casg=0. Leaving aside the trivial
be represented in the form of relations expresgip@nd()  cases=0, one can see that this equality is equivalent to two
through |e|* and the input beam ratio, (or Wo). These  requirementsy’ =0, "&,= 2N, wheren is an integer. By
relations include indeed the characteristic phagesnd 4, setting again6=0, we obtain, using Eq(26), that Q=
see Egs(3) and (30). The simplest relations correspond t0 —tang and
the cased=0, most important for experiment. In this case

we obtain instead of E(38): 2mn
go:gcosﬁ' (41)
w22 +L2
& g(mj cosf—L sinf) (39 These relations may be fulfilled far# + 7/2. The absolute
minimum of the thicknessgy'"=27, corresponds tde|?
mj tanf+L =1, 0=0, and cog==*1. With |¢|? decreasing from one
T mj—Ltane 40 {0 zero &, is increasing by a factor of MWg|. If |Wy
<1/2(1/3<ry<3), there are no forbidden gaps fés, i.e.,
Sincej==*1,+3, ..., wehave a sequence of branches forfor £,=27/|cosé| one can find at least one proper value of
£ and (). |£|? (and of ).
Let us consider in some detail what follows from Egs.
(39 and(40) for different values of the phasethat charac- VIIl. DISCUSSION
terizes the photorefractive response. The simplest case is _ o
=0 (the local respongeHere, the expression faf, is in- The generality of the proposed method for describing the

variant under the reversal of the input beam ratio, i.e., it isefféct of fast phase modulation can, in our opinion, be re-
even in loger, (in W,). Correspondingly, the function 9arded as its most important distinctive feature. It is appli-
le|2(logyoro) is also even. At the same time, the frequencycable, indeed, to all particular models of the photorefractive

detuning ) is an odd function of logro. The minimum nonlinearity without any restrictions on the form and
min strength of the fast modulation.

possible value of the crystal thickness £ 0 is &y = ; it ; ) . . .

matches Eq(39) for ro=1 andQ =0 By performing the time averaging, we did not use, in fact,
Figure 7a) showsothe dependeﬁces of]2 and O on the periodicity of the phase oscillations. Hence, the obtained

logyero for 6=0, j =1, and different values af,. Since Eqs results are applicable also to the effect of HF random phase
1070 ' ’ o _ fluctuations on 2W-coupling. The parameteis in this case

(39 and (40) have no solutions fof#1 within the range thi lse than the statistical fth di
T<§&y<3r, the plotted curves cover adequately the casd'0thing €ise than the statistical average of the corresponding
phase exponent.

under study. We see that the permitted intervalpéxpands A ibility lizati f thod
quickly with increasingé,; one can find that the extreme S a Possibility Tor generalization of our method we can
P : mention the introduction of a phase modulation into the sec-
values of ro (téhat corrnizl?]pond tde|*=1) are given by ond light beam. In this case not only averages like
|Iog10r0|:0'43 77(50_5_0 )- _ The minimum valuemir?f =(expl¢p)) but also the mutual correlation function of the
|2]*(ro) decreases rapidly with increasidg. For £~ &3  ¢orresponding exponential phase factors come onto the scene
<&;'"" the dependenc@(log;oro) is nearly linear. With in-  gnq 2W-coupling becomes possible even der0.
creasingf it steepens near zero and saturates for sufficiently  gych a generalization is important, e.g., for the studies of
large values oflogyoro|- the light-induced scattering inherent in most of the photore-
The casef= is not much different from the caseé  fractive crystals[1,2,16 and important for many practical
=0. We should choose hefle=1 in Egs.(39) and (40);  applications. We hope that the phase modulation technique
therefore the dependencgs ®(log;ore) remain unchanged can be a useful tool for the experimental determination of the
while Q(logyoro) has to be replaced by Q) (logsoro). mechanisms and the correlation properties of this scattering
For 6+0,7 the dependences ¢&|> and Q on logi,ro in different crystals and optical configurations.
lose their symmetry properties. These dependences change Owing to its generality, the proposed method can be ap-
considerably wherd is increasing from O tar/2, see Figs. plied to describe 4W-coupling, which is topical for analysis
7(b) and 7c). One sees that the minimum crystal thicknessand optimization of various photorefractive schemes with the
increases and the actual range ofylgg shifts to the right.  phase conjugation and optical oscillatiiv,18. The possi-
For 6=m/2 (the diffusion like respongewe have &'""  bility to control the rate of spatial amplification and the dif-
=24r; this minimum thickness corresponds ttg=exp(m) fractivity of the recorded grating looks attractive for the pho-
=23 andQ)=—1. The permitted values af, are larger than torefractive devices based on 4W-mixing.
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FIG. 7. Dependencels|?(ry) andQ(r,) for different values ofg and &,. The casega), (b), and(c) correspond ta9=0,45, and 90
degrees, respectively. The curves 1, 2, 3, 4, and 5 in the(apaee plotted forg,=3.5, 4, 5, 7, and 10. For the cagé$ and(c) the curves
1, 2, 3, 4, and 5 correspond g=4, 4.5, 5, 6, and 10 ané§,=6.3, 6.5, 7, 8, and 10, respectively.

The developed theory has given a number of clear predictransmitted components of this beam. Both experirhi@at]
tions for the effect of strong and fast phase modulation orand numerical simulationg8] show that such a feedback
the characteristics of 2W-coupling. We are expecting to seérings a sufficiently thick crystal to the state with=1 (or
these predictions verified experimentally in the near future0). Since the transmittetbr diffracted component of theS
Photorefractive ferroelectrics, such as LiNQOBaTIiO;, beam becomes here zero, the above phase shift becomes un-
and KNbG, with strong local and nonlocal nonlinear re- defined and the feedback fails. After that the system flees
sponses and relatively long response time seem to be mogtiickly the state withn=1 (or 0) and the feedback loop
promising for this purpose. starts to operate aga(B]. The periodic states described in

It is important that the results of Sec. VII on maximiza- Sec. VII should therefore be considered as the final result of
tion (minimization of the diffraction efficiency have a close introducing the= 77/2 feedback. Its is remarkable that the
relation to the known experimental data on the feedback conproper values ot and() are achieved automatically in this
trolled 2W-coupling[5—7]. In this case, an electronic feed- case. At the same time, the periodic states wital and 0
back loop adjusts the input phase of the signal beam to maireannot be described within the feedback model because the
tain a/2 (or — 7/2) phase shift between the diffracted and fast phase modulation arises owing to failure of the feedback
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at certain time moments. The obtained results form the firnfor describing 2W-coupling under a fast and arbitrary strong-
basis for understanding of the known experimental resultphase modulation. The theory has given a number of predic-
and of the consequences of introduction of ther/2-  tions for shaping the characteristics of 2W-coupling and, in
feedback loop. particular, for maximization and minimization of the diffrac-
tion efficiency. The connection with the prior experimental
results on active stabilization is revealed. Possibilities for

Using the distinctive features of the photorefractive non-generalization and application of the obtained theoretical
linearity, we have proposed and developed a general methaesults are outlined.

IX. CONCLUSIONS

[1] Photorefractive Materials and Their Applicationsddited by [9] J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, Opt.
P. Ginter and J.-P. Huignard, Topics in Applied Physics Commun.85, 5 (1991).
(Springer, Berlin, 1988 Photorefractive Materials and Their [10] J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, Opt.

Applications I| edited by P. Guter and J.-P. Huignard, Topics Lett. 16, 1442(1997).

in Applied PhysicgSpringer, Berlin, 1989 [11] J. Khoury, V. Ryan, M. Cronin-Golomb, and C. Woods, J.
[2] L. Solymar, D.J. Webb, and A. Grunnet-Jeps&he Physics Opt. Soc. Am. B10, 72 (1993.

and Applications of Photorefractive MaterialéClarendon [12] Y. Li, X. Sun, Y. Jiang, Zh. Zhou, and K. Xu, J. Opt. Soc. Am.

Press, Oxford, 1996 B 14, 3378(1997.

[3] M.P. Petrov, S.I. Stepanov, and A.V. KhomenRotorefrac- 13} ¢ 1, Field and F.M. Davidson, Appl. Op82, 5285(1993.
tive Crystals in Coherent Optical Systert®pringer, Berlin, [14] J. Khoury, M. Cronin-Golomb, and C. Woods, Opt. Let®,

4 }AQS:(]).' d P. YehOptical W in CrystaléWil N 743(1994.
4] Y;)rkari\ggzr; - YehQOptical Waves in Crystal@hiley, New [15] N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, and

V.L. Vinetskii, Ferroelectric2, 949 (1979.

5] A. Freschi and J. Frejlich, J. Opt. Soc. Am.R, 1837(1994.
[5] ) P (1994 [16] B.I. Sturman, S.G. Odoulov, and M.Yu. Goul'’kov, Phys. Rep.

[6] P.M. Garcia, K. Buse, D. Kip, and J. Frejlich, Opt. Commun.
117, 35(1995. 275 197 (1996.

[7] P.M. Garcia, A.A. Freschi, J. Frejlich, and E. iy, Appl. [17] S.K. Kwong, M. Cronin-Golomb, and A. Yariv, IEEE J. Quan-
Phys. B: Lasers Op63, 207 (1996 tum Electron.QE-22, 1508(1986.

[8] V.P. Kamenov, K.H. Ringhofer, B.l. Sturman, and J. Frejlich, (18] M. _Gower and D. .Proch,OptlcaI Phase Conjugation
Phys. Rev. A56, R2541(1997). (Springer-Verlag, Berlin, 1994



