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Shaping of photorefractive two-wave coupling by fast phase modulation
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B. I. Sturman† and A. Chernykh
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~Received 27 July 1999!

Using the distinctive features of the photorefractive nonlinearity, we derive a general self-consistent set of
equations to describe two-wave coupling in the presence of fast and arbitrary strong-phase modulation. By
considering a number of important particular cases, we show that phase modulation is a powerful and useful
tool for shaping the characteristics of two-wave coupling such as the value of the energy exchange, the
diffraction efficiency of the recorded grating, and the structure of the grating fringes. Finally, we analyze the
role of the phase modulation in the active stabilization of wave coupling by means of an electronically
introduced phase feedback.

PACS number~s!: 42.40.Pa, 42.65.Hw, 42.65.Sf, 42.70.Nq
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I. INTRODUCTION

Photorefractive two-wave coupling is, as is well know
due to the dynamic processes of recording of a refrac
index grating and diffraction from this grating@1,2#. The
buildup of the grating is, in turn, owing to the charge sep
ration by light and the linear electrooptic effect. The char
teristic time of charge separation in continuous wave~CW!
experiments ranges usually from;1022 to ;102 s and the
characteristic nonlinear length of phase changing may be
than;1021 cm @1–3#.

The main characteristics of the photorefractive wave c
pling such as the value of the energy exchange, the diff
tion efficiency of the recorded index grating, and the str
ture of the grating fringes are well understood, at least wit
the simplest models for light-induced charge transport. Th
characteristics depend essentially on the type of the phot
fractive response, i.e., on the phase shift between the ini
ing light interference pattern and the corresponding ind
grating. The possibilities to affect two-wave coupling exte
nally are rather restricted.

In this paper, we focus our attention on the possibility
shape the photorefractive two-wave~2W!-coupling by means
of fast phase modulation of an input~signal! light beam. The
essence of the influence may be explained as follows w
the aid of Fig. 1.

The amplitudeSof the modulated beam includes both t
fast (S̃) and slow (S̄) components whereas the amplitude
the reference beamR has initially no fast component. Th
light interference pattern~characterized by the productSR* )
experiences both fast oscillations and slow changes. S
the period of the phase modulation is supposed to be m
shorter than the buildup time of the space-charge field,
fast oscillations of the interference fringes at first do n
affect the grating formation. At the same time, the slow
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varying grating allows mutual Bragg diffraction of theR and
Sbeams. Thereby the amplitudeR acquires a fast componen
(R̃) inside the crystal. Because the productS̃R̃* has now a
slowly varying part, the fast components of the signal a
reference beams start also to participate in the grating for
tion. One can expect that the phase modulation affects in
way the grating recording so that the grating fringes and
spatio-temporal behavior of the amplitudesR,S differ con-
siderably from the conventional ones.

A few additional points related to the effect of pha
modulation are worth noting:

The phase modulation technique is one of the simples
introduce into the experimental setup@4#. The shape and the
strength of the phase oscillations may be varied over w
limits.

The effect of fast modulation on 2W-coupling admits
complete analytic investigation on the basis of the most g
eral properties of the photorefractive nonlinearity.

Phase modulation has an important implication for t
active stabilization of two-wave coupling by means of
electronically introduced phase feedback between the in
and the output@5#. Experiment and numerical modeling hav
shown@5–8# that a proper feedback leads often to a perio

FIG. 1. Scheme of a photorefractive 2W-coupling experime
The parallel bended lines show the grating fringes.
2029 ©2000 The American Physical Society
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2030 PRE 61RINGHOFER, KAMENOV, STURMAN, AND CHERNYKH
state with practically transparent~or totally diffracting! index
grating. This exciting property is definitely caused by t
effect of phase modulation of the input signal beam.

Note that the effect of fast phase modulation on photo
fractive wave mixing was already considered in a numbe
papers@9–14# having in mind possible applications. The a
thors of Refs.@9–11# analyze the effect of fast phase mod
lation on four-wave mixing within the undepleted pump a
proximation. On the basis of this analysis they demonstra
a photorefractive lock-in detector, a frequency converter,
a phase sensitive detector. An exact steady-state solutio
the simplest four-wave configuration with phase-modula
input beams was studied in Ref.@12#. The effect of fast phase
modulation on two-wave coupling was considered earlie
Ref. @13# within a particular mathematical model.

The method introduced in our paper is new to the bes
our knowledge; it is essentially more general and simple
form in comparison with the methods use in Refs.@12# and
@13#. The applications of our method are different from tho
considered in Refs.@9–11#.

II. GENERAL RELATIONS

A. Equations for two-wave coupling

The initial set of equations for the photorefractive 2W
coupling can be written in the following dimensionless for
see Refs.@2# and @8#:

]jR5 iES ~1!

]jS5 iE* R ~2!

~eid]t11!E5eiuRS* . ~3!

Here j and t are the dimensionless coordinate and timeR
andS are the dimensionless complex amplitudes of the
erence and signal beams~see also Fig. 1!, E is the dimen-
sionless grating amplitude,u and d are the characteristic
phases, and the asterisk means, as usual, complex con
tion. It is supposed that 0<j<j0, wherej0 is the dimen-
sionless crystal thickness; in experiment oftenj0@1.

Actually, the set~1!–~3! is valid for many particular mi-
croscopic models of the photorefractive nonlinearity. T
specification of the introduced dimensionless parameters
the simplest models may easily be found using Refs.@1–3#.
The importance of the parametersu andd is different. The
phaseu characterizes the type of the photorefractive
sponse and ranges from 0 to 2p. For the diffusion charge
transportu56p/2; in the case of dominating drift in a
external field or of photovoltaic transportu is often near 0 or
p. The casesu50 andu56p/2 are often referred to as th
cases of the local and nonlocal photorefractive respons
nonzero value of the phased means merely that the relax
ation rate of the space-charge field is a complex quan
often d is near zero. In the general caseudu,p/2.

Equations~1! and~2! describe mutual Bragg diffraction o
the R andS beams from the grating. The total light intensi
remains obviously constant during propagation; without l
of generality we suppose that the dimensionless total in
sity uRu21uSu251. Equation~3! describes evolution of the
grating subject to the interference light pattern. The grat
-
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fringes are generally tilted and bent and they are changin
time. In spite of its simplicity the nonlinear set~1!–~3! can-
not generally be solved analytically; it allows a great deal
nonlinear regimes for the light amplitudesR andS.

Let theR andSbeams be incident onto the planej50 as
shown in Fig. 1. Then, we can formulate the boundary c
ditions for Eqs.~1!–~3! in the form

R~0,t!5R0 ; S~0,t!5S0 exp~ iwp!, ~4!

where the phasewp5wp(t) is a periodic function with pe-
riod tp!1 and a zero average value,^wp&50. This function
describes the fast phase modulation in question. The in
amplitudesR0 andS0 are generally slowly varying function
of t.

Figure 2 shows schematically the Fourier spectrum of
input signal S(0,v). The peaks placed at approximate
2ptd

21 , 4ptd
21 , . . . are indeed due to the fast pha

modulation in general. They are not much smaller than
zero peak. The width of the peaks, which is supposed to
of the order of one, is due to slow changes ofS0. The output
amplitudes are expected to have a similar structure of
Fourier spectrum.

B. Fundamental solutions

The first two equations of the set~1!–~3! do not contain
any time derivatives and are linear inR,S. This property
enables us to formulate some fundamental features of
diffraction process.

Let us consider the grating amplitudeE in Eqs.~1! and~2!
as a certain single-valued function ofj at an arbitrary mo-
mentt. We can claim then that these equations possess
fundamental solutionRr ,Sr meeting the boundary condi
tions Rr(0)51, Sr(0)50. This solution correspond
physically to a test of the spatial grating~recorded up to the
momentt) by a single beam of unit amplitude incident in th
R direction, see Fig. 3~a!; Rr(j) andSr(j) are the transmit-
ted and diffracted parts of this test beam, respectively.
can define analogously another independent fundamenta
lution of the set~1!, ~2!, Rs ,Ss , which meets the boundar
conditionsRs(0)50, Ss(0)51 and corresponds to a test o
the same grating by a single beam of unit amplitude incid
in the S direction, see Fig. 3~b!. Using Eqs.~1! and ~2!, one
can come easily to the important relations

Ss5Rr* ; Rs52Sr* . ~5!

FIG. 2. Scheme of the Fourier spectrum of the input signal.
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PRE 61 2031SHAPING OF PHOTOREFRACTIVE TWO-WAVE . . .
They express the symmetry of Eqs.~1! and ~2! under inter-
change of the beamsR and S. The quantityh5uRs(j0)u2
5uSr(j0)u2 is nothing else than the diffraction efficiency o
the grating at the momentt.

The solution of Eqs.~1! and~2! with boundary conditions
~4! is expressed by the fundamental solutions as follows

R5R0Rr1S0eiwpRs

~6!

S5R0Sr1S0eiwpSs .

Equations~6! show explicitly that each of the amplitude
consists of transmitted and diffracted components. The fo
representation allows, as we shall see in the next sectio
perform the averaging of Eqs.~1!–~3! over the fast phase
oscillations.

III. TIME AVERAGING

As follows from the structure of Eq.~3!, the response o
the grating amplitudeE to the temporal oscillation of the
productRS* with frequencies much higher than 1~the high-
frequency peaks in Fig. 2! is strongly suppressed. In othe
words, in the leading approximation intp the grating ampli-
tudeE is a slowly varying function oft despite of possibly
strong fast oscillations ofR andS. Correspondingly, the fun
damental solutionsRr ,s and Sr ,s are also slowly varying
functions oft.

To use this fact for the averaging, we present the li
amplitudesR andS in the form

FIG. 3. Geometric schemes for the introduction of the fun
mental solutions.
d
to

t

R5R̄1R̃
~7!

S5S̄1S̃,

where R̄,S̄ and R̃,S̃ are the slow and fast components, r
spectively, so that̂ R̃&5^S̃&50. Then we have from Eqs
~1!–~3! for R̄ and S̄,

]jR̄5 iES̄
~8!

]jS̄5 iE* R̄.

These equations are not different in structure from Eqs.~1!

and ~2!. As follows from Eq. ~8!, the sumI 05uR̄u21uS̄u2
<1 does not depend on the propagation coordinatej.

For the grating amplitude we have after averaging of E
~3!,

~eid]t11!E5eiu~R̄S̄* 1^R̃S̃* &!. ~9!

The specific features of the case under study come from
averagê R̃S̃* & on the right-hand side of this equation.

Our next goal is to expresŝR̃S̃* & by R̄ and S̄. SinceR0
andS0 have no fast components, we get from Eq.~6!,

R̄5R0Rr1«S0Rs ~10!

S̄5R0Sr1«S0Ss ~11!

R̃5S0Rs@exp~ iwp!2«# ~12!

S̃5S0Ss@exp~ iwp!2«#, ~13!

where«5^exp(iwp)& is a complex parameter characterizin
the effect of phase modulation. Obviously, we haveu«u<1
and the limiting caseu«u51 corresponds to the absence
the fast modulation. Using Eqs.~5!, ~10!, and ~11!, we ex-
pressSs* andRs algebraically byR̄ and S̄* ,

Ss* 5~R0* R̄1«S0S̄* !I 0
21 ~14!

Rs5~«* S0* R̄2R0S̄* !I 0
21 ~15!

with I 05uR0u21u«S0u2[uR̄u21uS̄u2. Substituting finally
these expressions into Eqs.~12! and ~13!, we obtain easily,

^R̃S̃* &5 uS0u2I 0
22~12u«u2!~R0* R̄1«S0S̄* !

3~«* S0* R̄2R0S̄* !. ~16!

This is the relation sought for. Foru«u251, which means no
fast modulation, we have from Eq.~16! the obvious result,

^R̃S̃* &50.
By substituting Eq.~16! into Eq. ~9!, we arrive at the

following explicit equation forE, completing the set~8!:

~eid]t11!E5eiu@aR̄S̄* 2b~S̄* !21b* R̄2#, ~17!

where

-
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2032 PRE 61RINGHOFER, KAMENOV, STURMAN, AND CHERNYKH
a511uS0u2~12u«u2!~ u«S0u22uR0u2!I 0
22

~18!
b5uS0u2~12u«u2!«S0R0I 0

22 .

The parametersa andb are fully defined by« and the slow
input amplitudesS0 and R0. The boundary values ofS̄(j)
and R̄(j) are obviously given byS̄(0)5«S0 and R̄(0)
5R0.

The terms proportional to (S̄* )2 and R̄2 make the struc-
ture of Eq.~17! essentially different from that of the conven
tional equation for the grating amplitude@1–3#. We can ex-
pect therefore that 2W-coupling in photorefractive cryst
can be shaped effectively by the fast phase modulation.

Note that the fast componentsR̃,S̃ as well as the tota
intensities of theR and S beams may be expressed throu
R̄, S̄ using Eqs.~12!–~15!. The diffraction efficiency,h
5uRs(j0)u2, is expressed byR̄, S̄ using Eq.~15!.

IV. THE UNITARY TRANSFORMATION

Equation~8! for R̄, S̄ possess a fundamental symme
property that can be verified by direct calculation. They
invariant under the unitary transformationR̄,S̄→u,v given
by

S R̄

S̄*
D 5S P 2Q*

Q P* D S u

v* D , ~19!

whereP,Q* are complex parameters meeting the condit
uPu21uQu251. In other words, after this transformation w
have

]ju5 iEv
~20!

]jv5 iE* u.

Physically, this means that there is a variety of wave pairs
the same total intensity coupled via the same grating.

Equation~17! for the grating amplitude changes its stru
ture under the unitary transformation. Moreover, by a pro
choice ofP andQ this equation may be considerably simp
fied. This gives us a constructive method for solving the
~8!, ~17!.

After the unitary transformation, the right-hand side
Eq. ~17! contains terms proportional touv* ,u2, andv* 2. By
imposing the additional condition,

Q

P
5

a6Aa214ubu2

2b
, ~21!

we eliminate simultaneously the termsu2 andv* 2 so that the
equation forE attains the form

~eid]t11!E57Aa214ubu2eiuuv* . ~22!

The closed set of Eqs.~20! and~22! for u, v, andE is not
different in structure from the conventional one for 2W
coupling. The effect of the fast modulation comes now fro
the square root in Eq.~22! and from the algebraic relation
betweenu,v and R̄,S̄. As can be shown, both signs in Eq
s

e

n

f

r

t

f

~21! and ~22!, the upper and the lower, lead to the sam
physical results. For definiteness sake, we choose from
on the upper sign in these equations.

The explicit expressions forP andQ may then be chosen
in the form

P5
1

A2
S 12

a

Aa214ubu2
D 1/2

R0

uR0u
~23!

Q* 5
1

A2
S 11

a

Aa214ubu2
D 1/2

«S0

u«S0u
.

The boundary values of new variables atj50, u0 and v0,
are given by the inverse unitary transformation,

S u0

v0*
D 5S P* Q*

2Q P D S R̄0

S̄0*
D . ~24!

The relations derived in this section are sufficient to d
scribe fully 2W-coupling under fast phase modulation.

V. STEADY-STATE SOLUTIONS

In the general case, a frequency shiftV exists in steady
state between the interacting waves. This shift is suppose
be sufficiently small,uVu&1. The grating fringes are moving
in steady state with constant velocity.

To obtain the stationary solution of Eqs.~20! and~22! for
u,v* we assume thatR0 andR̄ are constant in time whileS0

and S̄ are proportional to exp(iVt). Then we see from Eqs
~19!, ~20!, ~22!, and ~23! that P,u5const andQ,v* ,E
}exp(2iVt). Correspondingly, we haveE52 iguv* /I 0 and
the following ordinary differential equations foru andv* :

I 0uj5guuvu2

~25!
I 0vj* 52gv* uuu2,

where

g5gC ~26!

is a product of two different factors. The positive factorg
depends on the input parameterW05uR0u22uS0u2 and u«u2,

g5AW0
21u«u2~12W0

2!. ~27!

This factor is symmetric under the interchange of the in
intensitiesuR0u2 anduS0u2. It is obviously an increasing func
tion of u«u2. For u«u2.1 or for W0.61 ~strongly different
input intensities! we haveg.1. Note that we prefer to use
the input parameterW0, which ranges from21 to 1, instead
of the input contrast of the interference pattern,A12W0

2.
Sometimes, we shall also use the input beam ratior 0
5uR0u2/uS0u25(11W0)/(12W0) instead ofW0. This pa-
rameter ranges from zero to infinity.

The complex parameterC depends on the frequency de
tuning V and the characteristic phasesu andd,

C5
i exp~ iu!

12 iV exp~ id!
. ~28!



s

a

nc
t

-

ef

of

-
ra
e
ul

ge

y

e

l

lue
n.

ut

ies
y

fect
lyze

t

es
r

m-

ess,

of
k
sfer.

gy
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The solution of Eqs.~25! with the boundary valuesv0*
5v* (0), u05u(0) has the form

u5u0F I 0

uu0u21uv0u2 exp~2g8j!
G g/2g8

~29!

v* 5v0* F I 0

uv0u21uu0u2 exp~22g8j!
G g/2g8

,

where, g85Rg. As follows from Eq. ~29! @or from Eq.
~19!#, uuu21uvu25uu0u21uv0u2[I 0.

For the amplitudesR̄, S̄* we have after some calculation
with the use of Eqs.~19!, ~23!, and~24!:

R̄5R0FcoshS gj

2 D1
~W01u«u22W0u«u2!

g
sinhS gj

2 D G
3Fcosh~g8j!1

W0

g
sinh~g8j!G2g/2g8

~30!

S̄* 5«* S0* FcoshS gj

2 D2
1

g
sinhS gj

2 D G
3Fcosh~g8j!1

W0

g
sinh~g8j!G2 g/2g8

.

At «51 the obtained relations simplify to the convention
ones for 2W-coupling@1–3#. At «50, which means no slow
input component of theS beam, we haveS̄50, R̄5R0, and
E50. This result is expected because the light interfere
pattern has here only a fast component. It is not difficult
make sure also thatuR̄u21uS̄u25I 0.

Using Eqs.~15! and ~30!, we can calculate now the dif
fraction efficiency of the recorded grating,h5uRs(j0)u2,

h5
u«u2~12W0

2!

g

usinh~gj0 /2!u2

g cosh~g8j0!1W0 sinh~g8j0!
. ~31!

At «51 this transforms again into the known result of R
@15#; at «50 we have, as expected,h50.

The averaged output intensitieŝ uR̃(j0)u2& and

^uS̃(j0)u2&, related to the quickly oscillating components
the beams, are expressed byh,

^uR̃~j0!u2&5uS0u2h~12u«u2!

~32!
^uS̃~j0!u2&5uS0u2~12h!~12u«u2!.

The relations~30!–~32! include a great deal of informa
tion about the effect of fast phase modulation on the cha
teristics of 2W-coupling. In the following two sections, w
apply these general relations to the most important partic
cases.

VI. CHARACTERISTICS OF THE ENERGY EXCHANGE

The simplest results take place for the total time-avera
intensities, ^uRu2&5uR̄u21^uR̃u2& and ^uSu2&5uS̄u21^uS̃u2&.
l

e
o

.

c-

ar

d

Since^uRu2&1^uSu2&51, the above intensities may be full
characterized by a single combination of^uRu2& and^uSu2&. It
is useful to choose for this combination the beam ratior
5^uRu2&/^uSu2&. From Eqs.~30!, ~31!, and~32! one can ob-
tain,

r

r 0
5

11a1 tanh~g8j!

11a2 tanh~g8j!
, ~33!

wherer 05uR0u2/uS0u2 is again the input beam ratio and th
real parametersa6 , such thata2,a1 and ua6u,1, are
given by

a15
r 02112u«u2

A~r 021!214r 0u«u2

~34!

a25
r 02122r 0u«u2

A~r 021!214r 0u«u2
.

The spatial dependence ofr is defined only by the rea
part of the characteristic exponentg. Therefore, the energy
exchange remains unidirectional irrespectively of the va
of the parameteru«u2, characterizing the phase modulatio
The sign ofg8, as seen from Eqs.~26! and ~27!, does not
depend on«. If g8.0, energy is transferred to theR beam.
In the absence of the fast modulation (u«u251) Eq. ~33!
gives the exponential spatial amplification,r 5r 0 exp(2g8j0)
of conventional for 2W-coupling. In the case of equal inp
intensities, W050 (r 051), we have a6561, g8
5u«uC8, so that Eq.~33! is reduced tor 5exp(u«uC8j0).

The effect of phase modulation on the total intensit
^uRu2& and ^uSu2& is reduced to weakening of the energ
transfer. Depending on the purpose of experiment, this ef
may be regarded as positive or negative. Below we ana
the dependencer (u«u2,g8j0 ,r 0) in more detail.

Let us consider the spatial amplification of a weak inpuR
beam (r 0!1) in a sufficiently thick (2g8j0@1) nonlinear
medium. In this case, we have from Eqs.~33! and ~34!:

r ~j0!

r 0
.

u«u2 exp~2g8j0!11

r 0
2u«u2~12u«u2!exp~2g8j0!11

, ~35!

where the dependence ofg8 on u«u2 andr 0 is negligible, see
Eq. ~27!. The main effect of the phase modulation com
from the denominator of Eq.~35! and becomes important fo
r 0

2u«u2(12u«u2)*exp(22g8j0). In the vicinity of the points
u«u250 and 1 one can expect peculiarities of the spatial a
plification.

Figure 4 shows the dependencer (j0)/r 0 plotted on the
basis of Eq.~33! for a small input beam ratior 0 and several
representative values ofu«u2. The smalleru«u2, the lower is
the corresponding curve. For a moderate crystal thickn
g8j0&5, decrease ofu«u2 from 1 to .0.5 does not produce
any sharp decrease ofr. For g8j0*8 the output beam ratio
r (j0) becomes, however, highly sensitive to a decrease
u«u2 in the vicinity of unity. In other words, even a very wea
phase modulation can strongly suppress the energy tran
As seen from Fig. 4, forg8j0*6 the dependencer (u«u2) is
also very sharp in the vicinity of zero. To make the ener
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transfer very week, we have to adjustu«u2 to zero with a very
high accuracy. The smaller the input ratio, the larger
critical crystal thickness and the higher is the saturated va
of r (j0)/r 0.

Figure 5 shows the dependencer (r 0) for g8j056 and
several values ofu«u2. For u«u251 this dependence is indee
strictly linear. Introduction of the phase modulation chang
the structure of the curves. Foru«u2,1 the functionr (r 0)
has a clear maximum. The position of this maximum sh
gradually to zero with decreasingu«u2 and its value is
strongly decreasing.

In such a way, the phase modulation allows to shape c
siderably the characteristics of the spatial amplification.
sufficiently thick crystal acts indeed as a strongly nonlin
filter for amplifying signals.

The energy exchange between the slow intensity com
nentsuR̄u2 and uS̄u2, which can be separated fromuRu2 and
uSu2 by temporal filtering, is possible even forg850 when
the total intensitieŝ uRu2& and ^uSu2& remain constant. This
case, relevant to dominating photovoltaic or drift char
transport in ferroelectrics@2,3#, deserves a more detaile
consideration.

By settingg850 in Eq.~30! one can represent the spati
dependences ofuR̄(j0)u2 and uS̄(j0)u2 in the form

uR̄~j0!u25uR̄~0!u22D sin2~g9j0/2!

~36!

uS̄~j0!u25uS̄~0!u21D sin2~g9j0/2!,

whereR̄(0)5R0 , S̄(0)5«S0, and

FIG. 4. Dependence of the ratior /r 0 on the crystal thicknessj0

for the input beam ratior 50.02. The curves 1, 2, 3, 4, and
correspond tou«u251, 0.99, 0.1, 0.5, and 0.05, respectively.

FIG. 5. The output beam ratior versusr 0 for g8j056; the
curves 1, 2, 3, and 4 are plotted foru«u251, 0.95, 0.9, and 0.6
respectively.
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D5
4uR0u2u«u2~12u«u2!

~r 021!214r 0u«u2
. ~37!

Since D.0, the intensitiesuR̄u2, uS̄u2 oscillate with g9j0

between the input values anduR̄(0)u22D, uS̄(0)u21D, re-
spectively, see Fig. 6. In average, the value ofuR̄(j0)u2 is
less thanuR̄(0)u2 whereasuS̄(j0)u2 is larger thanuS̄(0)u2.

The spanD may approach~or be equal to! uR̄(0)u2 or
uS̄(0)u2, which means a strong energy exchange. The eq
ity D5uR̄(0)u2[uR0u2 takes place foru«u2<1/2, r 051
22u«u2,1, see Fig. 6~a!. The caseD.uS̄0u2[u«u2uS0u2 cor-
responds tor 0.1, u«u2!1; hereuS̄(0)u2!uS0u2.uR0u2, see
Fig. 6~b!.

In the general case, when bothg8 andg9 are nonzero, the
energy exchange betweenuR̄u2 anduS̄u2 becomes more com
plicated. The spatial oscillations are superimposed here
the unidirectional energy transfer.

VII. FULLY DIFFRACTIVE AND TRANSPARENT
GRATINGS

The diffraction efficiency of the recorded grating,h, is
also an important characteristic of 2W-coupling. Below w
show thath can be made equal to 1 or 0 with the use of t
phase modulation technique for a sufficiently large crys
thicknessj0. In other words, the grating can be made fu
diffractive or fully transparent.

To prove that it is possible to reach the ultimate valueh
51, we use in Eq. ~31! the identity usinh(gj0/2)u2

5@cosh(g8j0)2cos(g9j0)#/2. The presence of two variabl

FIG. 6. The energy exchange between the slow intensity c

ponents forg850. The solid and dashed lines correspond touR̄u2

and uS̄u2, respectively. In the case~a! u«u250.25, r 050.5 and in
the case~b! u«u250.1, r 051.
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parameters,u«u2 and V, in the expressions forg @see Eqs.
~27! and ~28!# allows to considerg8j0 and g9j0 as two
independent variables to maximizeh. One can check di-
rectly thath51 for

g9j05p j
~38!

g8j05L,

where j is an odd number~positive or negative! and L
5 ln@(g2W0)/(g1W0)#. Using Eq.~26!, these conditions can
be represented in the form of relations expressingj0 andV
through u«u2 and the input beam ratior 0 ~or W0). These
relations include indeed the characteristic phasesu and d,
see Eqs.~3! and ~30!. The simplest relations correspond
the cased50, most important for experiment. In this ca
we obtain instead of Eq.~38!:

j05
p2 j 21L2

g~p j cosu2L sinu!
~39!

V52
p j tanu1L

p j 2L tanu
. ~40!

Since j 561,63, . . . , wehave a sequence of branches f
j0 andV.

Let us consider in some detail what follows from Eq
~39! and~40! for different values of the phaseu that charac-
terizes the photorefractive response. The simplest caseu
50 ~the local response!. Here, the expression forj0 is in-
variant under the reversal of the input beam ratio, i.e., i
even in log10 r0 ~in W0). Correspondingly, the function
u«u2(log10 r0) is also even. At the same time, the frequen
detuning V is an odd function of log10 r0. The minimum
possible value of the crystal thickness foru50 is j0

min5p; it
matches Eq.~39! for r 051 andV50.

Figure 7~a! shows the dependences ofu«u2 and V on
log10 r0 for u50, j 51, and different values ofj0. Since Eqs.
~39! and ~40! have no solutions forj Þ1 within the range
p,j0,3p, the plotted curves cover adequately the ca
under study. We see that the permitted interval ofr 0 expands
quickly with increasingj0; one can find that the extrem
values of r 0 ~that correspond tou«u251) are given by
u log10 r0u.0.43Ap(j02j0

min). The minimum value of
u«u2(r 0) decreases rapidly with increasingj0. For j02j0

min

!j0
min the dependenceV(log10 r0) is nearly linear. With in-

creasingj0 it steepens near zero and saturates for sufficie
large values ofu log10 r0u.

The caseu5p is not much different from the caseu
50. We should choose herej 51 in Eqs. ~39! and ~40!;
therefore the dependencesu«u2(log10 r0) remain unchanged
while V(log10 r0) has to be replaced by2V(log10 r0).

For uÞ0,p the dependences ofu«u2 and V on log10 r0
lose their symmetry properties. These dependences ch
considerably whenu is increasing from 0 top/2, see Figs.
7~b! and 7~c!. One sees that the minimum crystal thickne
increases and the actual range of log10 r0 shifts to the right.
For u5p/2 ~the diffusion like response! we have j0

min

52p; this minimum thickness corresponds tor 05exp(p)
.23 andV521. The permitted values ofr 0 are larger than
.

s

e

ly

ge

s

1 for u5p/2. Physically, this means that the total intens
of the weakest beam has to be increasing owing to 2
coupling ~the same holds true foru52p/2). This property
is clearly seen from Eq.~39! becausej0 becomes an odd
function ofW0 ~or log10 r0) for u5p/2. As seen from Fig. 7,
the actual values ofV decrease with increasing sinu and the
curves that giveV(log10 r0) for different values ofj0 tend to
lose the intersection point. Foru56p/2 the branches with
j Þ1 come into the scene only for rather thick crystals,j0
>6p.19.

Now we turn to the caseh50. Leaving aside the trivial
case«50, one can see that this equality is equivalent to t
requirements,g850, g9j052pn, wheren is an integer. By
setting againd50, we obtain, using Eq.~26!, that V5
2tanu and

j05
2pn

g cosu
. ~41!

These relations may be fulfilled foruÞ6p/2. The absolute
minimum of the thickness,j0

min52p, corresponds tou«u2

51, V50, and cosu561. With u«u2 decreasing from one
to zero j0 is increasing by a factor of 1/uW0u. If uW0u
,1/2(1/3,r 0,3), there are no forbidden gaps forj0, i.e.,
for j0>2p/ucosuu one can find at least one proper value
u«u2 ~and ofV).

VIII. DISCUSSION

The generality of the proposed method for describing
effect of fast phase modulation can, in our opinion, be
garded as its most important distinctive feature. It is app
cable, indeed, to all particular models of the photorefract
nonlinearity without any restrictions on the form an
strength of the fast modulation.

By performing the time averaging, we did not use, in fa
the periodicity of the phase oscillations. Hence, the obtai
results are applicable also to the effect of HF random ph
fluctuations on 2W-coupling. The parameter« is in this case
nothing else than the statistical average of the correspon
phase exponent.

As a possibility for generalization of our method we c
mention the introduction of a phase modulation into the s
ond light beam. In this case not only averages like«
5^exp(iwp)& but also the mutual correlation function of th
corresponding exponential phase factors come onto the s
and 2W-coupling becomes possible even for«50.

Such a generalization is important, e.g., for the studies
the light-induced scattering inherent in most of the photo
fractive crystals@1,2,16# and important for many practica
applications. We hope that the phase modulation techni
can be a useful tool for the experimental determination of
mechanisms and the correlation properties of this scatte
in different crystals and optical configurations.

Owing to its generality, the proposed method can be
plied to describe 4W-coupling, which is topical for analys
and optimization of various photorefractive schemes with
phase conjugation and optical oscillation@17,18#. The possi-
bility to control the rate of spatial amplification and the d
fractivity of the recorded grating looks attractive for the ph
torefractive devices based on 4W-mixing.
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FIG. 7. Dependencesueu2(r 0) and V(r 0) for different values ofu and j0. The cases~a!, ~b!, and ~c! correspond tou50,45, and 90
degrees, respectively. The curves 1, 2, 3, 4, and 5 in the case~a! are plotted forj053.5, 4, 5, 7, and 10. For the cases~b! and~c! the curves
1, 2, 3, 4, and 5 correspond toj054, 4.5, 5, 6, and 10 andj056.3, 6.5, 7, 8, and 10, respectively.
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The developed theory has given a number of clear pre
tions for the effect of strong and fast phase modulation
the characteristics of 2W-coupling. We are expecting to
these predictions verified experimentally in the near futu
Photorefractive ferroelectrics, such as LiNbO3, BaTiO3,
and KNbO3, with strong local and nonlocal nonlinear re
sponses and relatively long response time seem to be
promising for this purpose.

It is important that the results of Sec. VII on maximiz
tion ~minimization! of the diffraction efficiency have a clos
relation to the known experimental data on the feedback c
trolled 2W-coupling@5–7#. In this case, an electronic feed
back loop adjusts the input phase of the signal beam to m
tain ap/2 ~or 2p/2) phase shift between the diffracted a
c-
n
e
.

ost

n-

n-

transmitted components of this beam. Both experiment@5–7#
and numerical simulations@8# show that such a feedbac
brings a sufficiently thick crystal to the state withh51 ~or
0!. Since the transmitted~or diffracted! component of theS
beam becomes here zero, the above phase shift become
defined and the feedback fails. After that the system fl
quickly the state withh51 ~or 0! and the feedback loop
starts to operate again@8#. The periodic states described
Sec. VII should therefore be considered as the final resu
introducing the6p/2 feedback. Its is remarkable that th
proper values of« andV are achieved automatically in thi
case. At the same time, the periodic states withh51 and 0
cannot be described within the feedback model because
fast phase modulation arises owing to failure of the feedb



rm
ul

n
th

g-
dic-
in
-

tal
for
ical

PRE 61 2037SHAPING OF PHOTOREFRACTIVE TWO-WAVE . . .
at certain time moments. The obtained results form the fi
basis for understanding of the known experimental res
and of the consequences of introduction of the6p/2-
feedback loop.

IX. CONCLUSIONS

Using the distinctive features of the photorefractive no
linearity, we have proposed and developed a general me
cs
r
s

n.

h,
ts

-
od

for describing 2W-coupling under a fast and arbitrary stron
phase modulation. The theory has given a number of pre
tions for shaping the characteristics of 2W-coupling and,
particular, for maximization and minimization of the diffrac
tion efficiency. The connection with the prior experimen
results on active stabilization is revealed. Possibilities
generalization and application of the obtained theoret
results are outlined.
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